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The acoustic scattering properties of a semi-infinite compliant plate immersed in 
turbulent flow are considered in the context of Lighthill’s theory of aerodynamic 
noise. The turbulent eddies are replaced by a volume distribution of quad- 
rupoles, and the reciprocal theorem used to transform the quadrupole scattering 
problem into one of the diffraction of a plane acoustic wave. This problem is 
solved by the Wiener-Hopf technique for the case when elastic forces in the 
plate are negligible, so that a local impedance condition relates the plate velocity 
to the pressure difference across the plate. Strong scattering of the near-field 
into propagating sound occurs when certain types of quadrupole lie sufficiently 
close to the plate edge, and we derive explicit expressions for the scattered fields 
in various cases. When fluid loading effects are small, and the plate relatively 
rigid, the results of Ffowcs Williams & Hall (1970) are recovered, in particular 
the U5 law for radiated intensity. A quite different behaviour is found in the case 
of high fluid loading, when the plate appears to be relatively limp. The radiated 
intensity then increases with flow velocity U according to a U6 law. In aero- 
nautical situations, surface compliance is negligible in its effect on the scattering 
process, and the U5 law must then apply provided the surface is sufficiently 
large. On the other hand, the effect of appreciable surface compliance is to greatly 
inhibit the near-field scattering from the surface edge. This weaker scattering 
is likely to be observed in underwater applications, where fluid loading effects 
are generally so high as to render unattainable the condition for a plate to be 
effectively rigid. 

1. Introduction 
According to the Lighthill (1952) theory of aerodynamic noise, the radiation 

from a region of turbulent flow may be calculated from the solution of a, classical 
acoustic problem, in which the turbulent zone is replaced by a volume distri- 
bution of quadrupoles. The quadrupole strength 5!&(x, t )  is assumed known in 
terms of properties of the turbulence alone, either from experiment or, for low 
Mach number flows, from the theory of incompressible turbulence. From his 
acoustic analogy, Lighthill was able to deduce his well-known Us law for increase 
of radiated intensity with flow velocitiy U ,  provided no boundaries are present 
in the flow. Curb (1955) was the first to consider the effects of rigid boundaries 
in the flow, showing that a rigid boundary could be replaced by a distribution of 
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surface dipoles. A plausible dimensional estimate of the dipole strength leads to 
Curle’s U6 law for intensity. However, although Curle’s solution of Lighthill’s 
wave equation is formally exact, it does not in itself constitute a deductive theory 
of surface effects, for it requires a knowledge of dipole and quadrupole strengths 
independently. A deductive theory would determine the dipole strength when 
given only the quadrupole strength, and such a theory is badly needed in view 
of the paradoxes which have arisen in the past through the application of Curle’s 
ideas to situations for which they were not intended. Fortunately, considerable 
progress has been made in recent years towards a clarification of various surface 
effects. Papers which determine the properties of the radiation entirely in terms 
of the Lighthill quadrupole stress tensor Tj(x,t) are those by Powell (1960; 
the case of an infinite rigid plate), Ffowcs Williams (1965; the infinite flexible 
plate), Davies (1967; the rigid sphere), Crighton (1970; the composite boundary 
formed by two semi-infinite compliant plates of different properties), and Ffowcs 
Williams & Hall (1970; the rigid semi-infinite plate). A study of these papers 
reveals a variety of interesting and quite unexpected effects, and we have no 
reason to suspect the possibilities to be exhausted in the above references. 

We are concerned here with developments of the work of Ffowcs Williams 
& Hall. They show that the scattering by a semi-infinite rigid plate is strongest 
for those quadrupoles which have both axes in planes with the plate edge as 
normal, as might be anticipated on physical grounds. The radiated pressure 
of such quadrupoles is enhanced over the free-field value by the factor (k,R)-%, 
li, being the acoustic wave-number, R the distance of the quadrupole from the 
edge. Thus the intensity produced by a quadrupole at a turbulence correlation 
length I ,  from the edge is increased, by the presence of the plate, by a factor 
M-=, where M is the turbulence Mach number, k,, = M1il. In underwater 
applications, this effect is exceedingly important, if it applies there, for the 
maximum value of M which is ever encountered is of the order 10V. Such large 
effects deserve close attention, and are bound to arouse some controversy, so 
that the precise circumstances under which these effects occur are well worth 
examination. Accordingly, we shall consider here the problem of the scattering 
of the near-field of the quadrupole by a semi-infinite plate, with allowance for 
some flexibility of the plate. The results should be of particular interest in under- 
water situations, where the effects of fluid loading are always significant and 
where practical structures are often far from rigid. In  this first study, however, 
we shall neglect elastic restoring forces in the plate, and shall treat the case of a 
locally reacting surface possessing inertia only. The case of an elastic plate or 
membrane would admittedly be less restrictive, but it appears that even the 
diffraction problem for the elastic plate has not yet received an entirely satis- 
factory treatment, despite several contributions to the literature. Subsequent 
work will attempt to remedy this situation, and also to consider other problems 
of scattering by sharp edges on various finite or semi-infinite bodies. 

It may be useful here to give a brief outline of the method to be used. Ideally, 
we should like to obtain the Green’s function for the problem, with source 
and observer in arbitrary positions. In  the case of the rigid half-plane, the Green’s 
function has been given in closed form by Macdonald (1915), and this function 
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has been used by Ffowcs Williams & Hall (1970). For almost any other problem, 
it is virtually impossible to obtain the Green function in a useful form. For- 
tunately this proves to be no obstacle for our purposes, as we are only interested 
in the strong distant scattered field which arises when the source is closer than a 
wavelength, approximately, to the plate edge. By the reciprocal theorem, we 
may interchange source and observer, and solve for the field close to the edge due 
to a source a t  a large distance-4.e. due to a plane propagating incident wave. 
The Wiener-Hopf technique is the natural tool for such problems, and especially 
here, for the behaviour near the plate edge is determined by the behaviour of the 
Fourier transformed field for large values of the transformed variable. The latter 
behaviour is found very simply from the Wiener-Hopf method. Further, it is 
sufficient to work out the components of Vq5 at  a point near the edge and in 
the plane of the plate, $ denoting the velocity potential. It is found that Vq5 has a 
singularity O ( x d ) ,  while q5 itself is O(&) near the edge, and therefore, near the edge 
the Helmholtz equation 

(V2+k;) q5 = 0 

reduces to V2q5 = 0, and the flow is incompressible, General results for the form 
of q5 in the incompressible flow past a sharp edge then allow us to determine the 
potential near the edge completely from a knowledge of Vq5 at points in the plane 
of the plate. By reciprocity, the solution for Vq5 will give us the field at infinity 
generated by a dipole near the edge, while a further differentiation of q5 gives the 
distant field when a quadrupole lies close to the edge. This programme will be 
carried out in the subsequent sections. 

The diffraction of a plane wave by a plate with an impedance boundary con- 
dition is analogous to the electromagnetic diffraction by a metallic half-plane 
of finite conductivity, a problem discussed by Senior (1952). The similarity is 
only formal, however, and the physical conditions of the two problems lead to 
quite different behaviour near the edge. In  fact, Senior’s paper contains an error, 
which appears to  yield the same edge singularity as in the acoustic case; the 
error was first noticed by Kranzer & Radlow (1965), and they give the correct 
results. The formal similarity then persists only in the kernel of the Wiener- 
Hopf equation. It seems simpler here to derive results from first principles as 
required, rather than to attempt to manipulate the formulae of Senior into the 
necessary form. In  particular, we give the derivation and solution of the Wiener- 
Hopf equation in some detail. This is perhaps advisable, as the method has 
found no previous application in aerodynamic noise theory though, as we shall 
see, it is particularly well suited to all problems of the scattering of the near- 
field of multipole sources by semi-infinite bodies. 

2. The Wiener-Hopf problem 
A plate of mass m per unit area and negligible thickness lies in the half-plane 

x > o ,  y = o ,  - - c o < z < + c o .  

Elastic forces in the plate will be neglected, so that the response of the plate is 
governed by a purely local relation (pressure difference) = (specific mass) x 
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(acceleration). The plate is surrounded by compressible fluid of density po and 
sound speed a,. We seek the acoustic field radiated to a distant point X, when a 
monopole source is placed at  an arbitrary point x. By the reciprocal theorem (the 
proof of which, for the present circumstances, follows from a trivial application 
of Green’s theorem), we may interchange emission and observation points, and 
solve for the field at  a general point x due to the presence of a monopole at  a 
distant point x,. Further, by suitable differentiations of the field with respect to 
x, we can generate the field at  x, due to a multipole of arbitrary order at  x. 

X&O. 00. $u) 

FIGURE 1. The co-ordinate system is such that the plato occupies the half-plane 2 2 0, 
y = 0, --a3 < z < +a. The points x and xo have Cartesian components; 

x = -(rsin$cosB, rsin$sin8, re,,$), 

xo = - (r,sin$ocosB,, rosin$osinO,, T,,COS$~), 

and their projections upon the plane z = 0 are displayed. 

We take a steady-state time factor exp[ - id], w > 0, and work in terms ofthe 
velocity potential, denoting the incident field by qi,, the scattered field by qi. 
It is convenient to introduce polar co-ordinates, as defined in figure 1, so that 

x = (-rsin@cosO, -rsin$sin#, -rcos$). 

Then the incident potential at  x due to a monopole at x, is 

as r,,+m, with r finite. Here k, = w/ao is the acoustic wave-number at frequency 
o. It is evident that the factor 

r;lexp[il%,r, + ik,z cos $,I 
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is common to the whole field, and that this factor contains the whole of the 
variation with z. The factor will therefore be omitted, and restored at a later 
stage. It is then sufficient to take an incident field 

&(z, y) = exp[ik(z cos B0 + y sin eO)], 

(V2 + W$@, Y )  = 0, 

(2 .2)  

and a scattered field $(x, y) satisfying 

(2.3) 

where k is the reduced wave-number k, sin $o. 
We emphasize the simplicity of this approach. The distant field of an arbit- 

rary three-dimensional multipole distribution can be obtained from the solution 
of a two-dimensional diffraction problem for an incident plane propagating 
wave. It will be seen later that only a small part of the information contained 
in the solution of the diffraction problem will be needed if we suppose the multi- 
pole to be close to the edge of the plate. 

We proceed with the solution of the diffraction problem posed by (2.2) and 
(2.3). If  r, denotes the pressure in the scattered field, and v the plate velocity 
in the positive y direction, then p = poiwq5 and the condition on the plate is 
simply p(z ,  0 - ) -p(x ,  0 + ) = - imwv(x), 

which may be written in terms of the potential as 

m 

Po 
D(x)  E $(z, 0 + ) - #(x, 0 - ) = - {$'(z, 0) + ik sin O,exp(ikxcos So)> (2.4) 

for x > 0. The prime denotes the operation ajay. At infinity, the scattered 
potential must satisfy a radiation or extinction condition. 

We solve the system (2.2), (2.3), (2.4) by a straightforward application of 
D. S. Jones's technique (Noble 1958) for Wiener-Hopf problems. Define full and 
half-range Fourier transforms in x according to 

@ - ( w N - @ + ( a Y Y ) ,  (2 .5)  

a being regarded as a complex variable. It is convenient to regard the wave- 
number k as complex also, introducing a small dissipative effect into the fluid 
which makes 

Then it can be shown by the usual arguments in problems of this kind that 
@+(a, y )  is a regular function of a: in the upper half-plane 

S+(Ima > -k,cosO,), 

and that @-(a, y) is regular in the lower half-plane 

k = k,+ik, ,  k,, k, > 0. 

X-(Ima < k,). 

There is a strip - k, cos So < Ima: < k, in which the full-range transform exists 
as a regular function of a. 
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The tra.nsform applied to (2.3) gives 

where y2 = a2- lc2. We define y as that branch of (a2 - k2)t  which tends to a as 
a! -+ co along the positive real axis. The a plane is to be cut from + k to k + ico 
in the first quadrant, and from - k to  - k - ico in the third. Then it can be shown 
that (a2-k2)4 = -i(k2-a2)),  where (k2-a2)* is the branch which tends to 
+ k ,  as a, k,+ 0. These are standard definitions and properties, to be found in 
Noble (1958). They show that the solution 

@(a, 9 )  = 4a)exPr  - rvl (Y ’ 0) 

= B(a)exP[YYl (9 < 0) (2.7) 

to (2.6) satisfies either a radiation or an extinction condition as I yI -+ 03. 

We now eliminate A(a), B(a) to  obtain a linear relation between functions 
whose domains of regularity are known. It follows from the continuity of #(x, y) 
across y = 0 for x < 0 ,  that @-(a, y) is continuous across y = 0. Using this fact 
in subtracting the two forms of (2.7) for y = 0 + and y = 0-  , we have 

D+(a) @+(a,O+)-@+(a,O-) = A(a)-B(a) .  

Now we use the fact that $‘(x, y) is continuous across y = 0 for all x. This implies 
that @’(a, y),  @!,.(a, y) and @:(a, y) are each continuous across y = 0, and hence 
from (2.7) that A(a) = -B(a). 

We have then D+(a) = 2A(a), and 

@!,.(a, 0) + @!-(a, 0)  = -yA(a) from (2.7). 

Elimination of A(a)  yields 

@>(a, 0) + @:(a, 0) = - &yD,(a). (2.8) 

We obtain a second linear relation of this kind by transforming the boundary 
condition (2.4) to give 

1 k sin 0, 
Po a + k cos 8, ‘ 

Finally we eliminate @;(a!, 0) between (2.8) and (2.9) to obtain 

k sin 19, 
+K(a)D+(a) + @’(a, 0) = - a + Ic cos 0,’ 

(2.10) 

in which K(a)  = ,u + (a2 - k2)*, ,u = 2po/m. This is a standard form of Wiener- 
Hopf equation, i.e. a linear relation between one unknown function regular in 
S,, one unknown function regular in S-, and functions regular in the strip of 
overlap between S, and S-. 

It can be shown that K(a)  has no zeros in the strip when the a plane is cut as 
stated earlier. We may therefore write 

K(a)  = K+(a)K-(a), 
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where the factors K,(a) are regular and non-zero in S, respectively. Explicit 
forms for the factors are given in the appendix. Then (2.10) becomes 

k sin 8, 
= -  

@.'_(a, 0) 
+K,(W,(a) + K S a )  K-(a)(a + k cos 8,) ' 

and the next step is to  write 

a sum of functions regular in 8, respectively. The required splitting is trivial, 

(2.11) 

1 
giving k sin 8, 

&-(a) = - 

L+(a) = - k sin 0, 
+ k cos 8,) K-( - k: COB 8,) * 

@:(a, 0) 
+K+(a)D+(a) -L+(a) = L ( a )  - ____ K-@) 

We now have 

= J(a) say. (2.12) 

This equation holds only in the common strip of regularity of both sides. How- 
ever, the left side defines J (a )  throughout #+, while the right side defines J(a) 
throughout S-. Because of the common strip of regularity, each side of (2.12) 
provides the analytic continuation of the other, and the composite function 
J(a)  defined by (2.12) is regular in the entire LX plane, Provided that we can show 
that both sides of (2.12) have only algebraic growth as a+co in all directions, 
it follows from the extension of Liouville's theorem that J (a )  must be a poly- 
nomial in a. In  fact we show here that J (a )  must vanish at  infinity, and hence that 
J(a)  vanishes identically. 

To do this, consider the potential difference 

D(x)  = $(x,O+)-$(x,O-). 

This is a continuous function of x, which is identically zero for x < 0, so that we 
must have D ( x ) - x A  as x+O+ with A >  0. 

The behaviour of the transformD+(a) for large 1.1 is found from the Abel theorem, 
that 

D+(&) - som xxe%axdX: lal-h-1, (2.13) 

as a303 with I m a  > 0. Similarly, we have that 
0 

@>'_(a, 0) - J $'(x+O-, O)eiazdx 

as a+oo with Ima  < 0. The integrand here is proportional to the fluid velocity 
induced by the scattered wave, and on physical grounds i t  cannot have a non- 
integrable singularity a t  (0,O). Thus we must have $'(x, 0) N (-x)+ as x+O- 
with v < 1, and this implies that 

@L(a,o) N Ial~-1, a+co, I m a  < 0. (2.14) 

- W  
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Note that these edge conditions are much weaker than those often used (Noble 
1958). From the appendix we have that 

K,(a) N lal* as Ial+oo 

in appropriate half-planes, while from (2.11) we have that &(a) are each O( 1aI-l). 
With these estimates and the edge conditions (2.13), (2.14), it is easily established 
that the function J ( a )  is identically zero. 

We thus determine @(a, 0) as 

(2.15) 

We shall now suppose that, in the sourceexcitation problem, the source is 
very close to the edge of the plate. In  the reciprocal problem, this corresponds 
to observation of the scattered field at a point x very close to the edge and hence, 
by Fourier inversion and use of the Abel theorem, to evaluation of (2.15) in 
the limit la\ +a. The result will be true in a strict asymptotic sense as 1x1 -to, 
but some care will be needed in its application and interpretation. Consider first 
the case of a surface which is nearly rigid in the sense that plk < 1. Then the 
criterion for the first term ofthe asymptotic development of (2.15) to dominate is 
that lclxl 5 1, which holds within a wavelength of the edge. On the other hand, 
when the fluid loading is high and the surface nearly limp, the requirement is 
presumably much more stringent, and we probably need plxl 5 1 (though this is 
difficult to see in view of the complexity of K-(a)). In  the application to the aero- 
dynamic noise problem we shall make the identification lc = MZijl, p = €hi1, 
where 1, is a turbulence eddy length scale, M = uo/ao the turbulence Mach num- 
ber and 6 the fluid loading parameter 2p, Zo/m. Aeronautical applications generally 
involve only small values of p /k ,  so that our results will be applicable to the 
scattering of the near-field of multipoles closer essentially than a wavelength 
to the edge. In underwater situations, the Mach number is never greater than 

while 6 is still only of order unity at most. It is, therefore, still possible to 
satisfy the condition plxl 5 1 with a value of 1x1 of order lo .  The point is that 
when the medium is water, the wavelength is so large that the codition on 
I x I  Can be satisfied with a realistic value of order I,, even though the surface is 
fairly limp in the sense that ,u/k 1. It is important to note that a decrease of I x I  
below a value of order 1, is irrelevant, in view of the crude way in which we are at  
present obliged to model the turbulence structure in relation to problems of 
flow-induced sound and vibration. 

3. The field in the vicinity of the edge 

graph justifies the use of the asymptotic form of (2.15), namely 
For points sufficiently close to the edge, the discussion of the previous para- 

k sin 8, 
@'(a,O) N a d .  

K-( - lc cos 8,) 
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Because of the linearity of the problem, it is sufficient, and convenient, to take 

@.‘_(a, 0) - u-+e+i, 

and use of the Abel theorem as in (2.14) then gives 

1 
as x+O-. 

( - nx)& 

We have also that 2 ( x , 0 )  ax = 0 for x < 0, (3.3) 

a result which follows from the fact that $(x, y) is an odd function of y which is 
continuous across y = 0 when x < 0. We c m  use the results (3.2) and (3.3) to 
evaluate the potential at a general point (x, y) near to the plate edge. For the 
singularity of a$/ay near the edge implies that the motion there is effectively 
incompressible, and the solution (3.2) shows that the general form for the domin- 
ant term of the potential must be 

$(R, 8) = AR* cos g0 + BR4 sin &8, (3.4) 

where x = - Rcos0, y = - Rsin8 and R = rsin$ is distance from the edge, 
in terms of the polar co-ordinates defined earlier. In  the case of a rigid surface, 
of course, the condition of zero velocity on y = 0, x > 0 can be satisfied by an 
expression of the form (3.4) without any higher-order terms. When the surface is 
not rigid, higher-order terms are needed for the complete solution, but the terms 
quoted in (3.4) must dominate when R is sufficiently small, the conditions being 
that kR 6 1 when p / k  4 1 while ,uR 5 1 when pu/k > 1. 

The constants A ,  B can be determined from (3.2) and (3.3). We find that 

= ~2R~k0sin8,s in$,s in~8 exp[i(k,r,+k,zcos$,+~~)] 

where all constants omitted a t  various stages have now been restored. We now 
regard $ as a function of x,, in which case the reciprocal theorem shows that 4 
is the scattered potential at  X, due to a monopole of unit strength at  x. Differen- 
tiations of $ with respect to x will give us the potential at x, due to multipoles 
of various orders at  x. For example, a$lax is the potential at x, due to a dipole 
of unit strength a t  x with axis in the + x direction; a2$/ax ay gives the potential 
at x, due to a quadrupole at x with one axis in the -t- x direction, the other in the 
+y direction. We shall not examine all the possibilities, but list below the 
potentials due to various multipoles of interest 

9 (3.5) d K - (  - k, sin $, cos 8,) TO 

k, sin 8, sin @, sin 48 exp[i(k,r, + k,z cos $, + &n)] 9- - , (3.6) 
ax dR4K-J - k, sin $, cos 8,) TO 

a24 - 
axay 2n*R%K-( - k, sin qk, cos 8,) TO 

axax dR&K-( - k, sin $, COB 8,T TO 

k, sin 0, sin ljf, cos 88 exp[i(k,r, + k,z cos $, + &)I 
, (3.7) 

, (3.8) 

-- -_ 

P$ ikt sin 8, sin $, cos $, sin g6 exp[i(k,r, + k,z cos 9, + in)] __ = - -  
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. (3.9) a2# 2R%$ sin 0, sin $, cos2 $, sin $6' exp[i(korp + k,z cos $, + @)I _ -  ~. - 
a22 n*K-( - k, sin $, cos 0,) YO 

For comparison we need also the distant fields emitted by the same multi- 
poles in the absence of the plate. These are obtained directly from (2.1), 
and are typified by 

9 (3.10) 
exp[i(k,r, + k,z cos $,)I 

= - k; sin $, sin 0, cos 0, 
ax ay YO 

provided koR < 1. The fields of other quadrupoles differ from (3.10) only in the 
directivity factors. This completes the derivation of detailed expressions for the 
distant fields of multipoles close to the edge of the plate. The application of 
these expressions to the scattering of the near-field of aerodynamic noise sources 
follows in the next section. 

4. Scattering of aerodynamic noise 
The Lighthill (1952) theory of aerodynamic noise involves the solution of a 

classical radiation problem, through the formulation of an inhomogeneous wave 
equation for the fluid density. The inhomogeneity takes the form of a double space 
derivative, a2zj/axi axi, representing the acoustic effect of a volume distribution 
of quadrupoles of strength Xj(x, t ) .  Lighthill shows how T,, can be regarded as 
known in terms of properties of the turbulent flow whose acoustic output is 
required, at  any rate provided the turbulence Mach number is low. Here we 
need little knowledge of T,, beyond the idea that it is a function dominated by the 
energy-containing eddies of the turbulence. These are characterized by the 
r.m.s. velocity u,, and an integral correlation length 1,. (Effects of turbulent eddy 
convection by a mean flow are ignored here.) Thus we can associate a characteris- 
tic frequency uo/Z, with T,,, and provided the Mach number N = uo/ao is low this 
will also be the typical frequency of the emitted radiation. The acoustic wave- 
number is therefore given by k, = HZil, and this is the only connexion between 
the acoustic and hydrodynamic aspects of the problem which we need in order 
to predict the increase in the power output of a given quadrupole which is caused 
by the presence of the half-plane. 

Consider first the relative fields of the (x,y), (x , z )  and (z ,z)  quadrupoles, as 
given by (3.7), (3.8) and (3.9). Apart from constants and directivity factors of 
order unity, the ratios between those fields are as 

1 : LOR : (koB)2, respectively. 

The formulae have been derived under the assumption that koR < 1, and we see 
therefore that quadrupoles with both axes in the plane with the plate edge as 
normal produce the most powerful scattered field. Those with one axis in that 
plane and the other parallel to the plate edge generate a linear field less powerful 
by a factor koR, those with both axes parallel to the edge by a factor (koR)2. 
These results are independent of the function K-, and we expect them to hold 
quite generally in problems of edge scattering. 
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We conhe attention now to the quadrupoles with both axes in the plane 
normal to the plate edge. If the plate is perfectly rigid, we have from (A 7), 

K-( - k cos 8,) = - i( %)a cos QB,, 
and then from (3.7) the distant field of an (x,y) quadrupole close to the edge is 

A first-order correction to this result, allowing for slight compliance of the plate, 
can be obtained by using the full expression (A7). The expression (4.1) agrees 
with a result of Ffowcs Williams & Hall (1970) if some changes of notation are 
made; in particular, Ffowcs Williams & Hall use T, for distance from the edge 
where we use R, and 0 for the far-field angle in place of our 8,. The ratio of scat- 
tered amplitude to direct amplitude is found from (4.1) and (3.10) as 

p N (k,R)-+ = (Z,/R)*M-*. (4.2) 

This amplification factor is the central result of the work of Ffowcs Williams & 
Hall. It may be applied to quadrupoles closer than a wavelength k;l to the plate 
edge and shows, for example, that the power output of a given quadrupole at  
R N I ,  is increased by a factor M-3 by the presence of the plate. In  underwater 
flow noise M never exceeds 10W (even when based on mean velocity, rather than 
r.m.s. velocity), and this scattering effect increases the power output of quad- 
rupoles close to the edge by at  least 60 dB. The power output of the quadrupoles 
in free-field varies as ui (Lighthill 1952), and therefore the scattered power varies 
as &-a result which could hardly be expected from any application of dimen- 
sional analysis to Curle’s (1955) solution of Lighthill’s equation. 

We obtain a quite different result by considering the case of a relatively limp 
surface, in which plk, 1. Using the result (A 12) we find the distant field of an 
(x, y) quadrupole to be 

(4.3) 
azq5 ik, sin 8, sin $, cos $0 exp[i(k,r, + k,x cos $,)I -- - 
ax ay 27T3R$* YO 

The amplification factor is now 

/3 N kxl.R-tpd = (I,/R)%-hM-l, (4.4) 

where E is the fluid loading parameter, B = 2p,Z,/m. This gives the asymptotic 
form of ,8 for a fixed value of E as M+ 0, whereas (4.2) gives the asymptotic form 
for a fixed M as E +  0. Apoint to note about (4.3) is that it shows that the scattered 
field vanishes as the surface mass m tends to zero. This is required physically, 
for then the surface would move with the flow generated by the incident field, and 
no scattering would occur. 

and B = O(l ) ,  the power output of 
quadrupoles near to the plate edge would be increased by about 40 dB, as against 
the 60dB which would be predicted by (4.2). The scattered power now varies 
as u ~ / E ,  in place of the U X  law of Ffowcs Williams & Hall (1970). That law con- 
siderably overestimates the scattered power if applied to circumstances in which 

Supposing that (4.4) holds for M = 
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the plate is not rigid relative to the surrounding fluid. A similar inhibition of the 
scattered power through the effect of high fluid loading (el% 9 1) was found in a 
previous study (Crighton 1970). There the scattering surface was taken to be 
formed by two joined semi-infinite planes with different specific masses. A 
u$ law was found for the case of low fluid loading (s /M < l),  whereas a u! law 
applies in the other limit e /M 

The condition for the plate to be effectively rigid in the present context is 
that e/M < 1. In  aeronautical situations this condition is generally well satisfied, 
the smallness of po leading to a small value of 6, with M being not too small. 
On the other hand, underwater applications seem usually to involve values of 6 
of order unity, with extremely small Mach numbers. The condition s /M $ 1  is 
strongly satisfied, the mass of fluid contained within a wavelength on either side of 
the plate being much greater than the mass of the plate. It therefore appears that 
the amplification factor (4.2) applies in aeronautical contexts, while (4.4) holds 
for underwater flow-noise scattering. There is no value in regarding the u: law 
as due to a distribution of surface dipoles in the sense of Curle (1955). For the 
surface is not compact relative to the emitted wavelength, and the function K- 
appearing in (3.5) is clearly not an analytic function of wave-number Ic,, and both 
of these facts preclude any such simple interpretation. Use of the complete expres- 
sion (A 11) for K- would yield an astonishing dependence upon M ,  which could 
not possibly be explained in elementary multipole terms. 

It is possible to generalize our results to the scattering of aerodynamic noise 
by a wedge of arbitrary angle. As an example, we take the case of a wedge of 
internal angle 45.. The essence of our method lies in the examination of the poten- 
tial near to the edge when the incident field is a plane propagating acoustic wave. 
The behaviour near the edge may be obtained simply by dimensional reasoning, 
at least when the faces of the wedge are rigid and k;l is the only length scale in the 
problem. For the scattered potential is dimensionless, and must tend t o  the 
incompressible flow potential past a right-angled wedge as k,R+ 0, where R 
is distance from the edge. It follows that 

# w (k,R)* as ~,R-+o, 

1. 

and that 

The amplification factor is /3 N (Z,/R)+M-+, 14.5) 

and the scattered power output varies as uy. 
We expect this result to apply to nearly rigid wedges, as before. If, however, 

the faces of the wedge were to respond to the applied pressure field in the same 
sort of way as the plate considered earlier, there would be two length scales in the 
problem, p-l and k i l .  In the case p / k ,  9 1, the form (4.3) might lead us to expect 
that # will vary as Ic,, the remainder of the dependence being taken up by the 
parameter p, so that 

(4.6) 

This form would again lead us to a u: law for scattered power, though its validity 
is no more than suggested by tho preceding argument. 
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5. Conclusions 
Lighthill’s acoustic analogy for aerodynamic noise problems involves the 

solution of a wave equation with a quadrupole inhomogeneity which is assumed 
known. When boundaries are present in the flow, the formal solution to Light- 
hill’s equation is supplemented by surface integrals involving quantities other 
than the quadrupole strength, and thus constitutes no more than an integral 
equation for the field. The proper deductions about the effects of solid surfaces 
cannot be drawn until the integral equation is solved. 

We have been concerned here with the solution of the integral equation in the 
case when the surface is formed by a semi-infinite compliant plate (though in 
fact we solve the differential form of the wave equation). We use the term com- 
pliant to imply that the plate is capable of deflexion, but with a purely local 
response to the fluctuating pressure field upon it. This is the case if the plate 
possesses inertia, but negligible elastic resistance to deformation, so that the 
usual differential relation for the plate response reduces to  a simple local pro- 
portionality between deflexion and pressure difference across the plate. We 
regard the present work as a first step towards a treatment of the more difficult 
problem of the elastic plate, though the adoption of a local impedance condition 
has great relevance to marine applications, where effects of elasticity are usually 
much smaller than those of inertia. 

It is found that a strong scattering of the near-field of a quadrupole into pro- 
pagating acoustic energy occurs when the quadrupole distance R from the edge 
is much smaller than a wavelength k i l ,  provided both axes of the quadrupole 
lie in the plane with plate edge as normal. The amplitude of the scattered wave 
depends upon a fluid loading parameter e, and upon the wave-number k,-or 
equivalently, upon the turbulence Mach number M .  A complete solution is given 
for the dependence of the scattered field upon 8, M and R, and upon angular 
factors specifying the direction in the far-field and the position of the quadrupole. 

The results of Ffowcs Williams & Hall (1970) for the rigid plate are recovered 
by setting E = 0. The principal result is then contained in the formula (4.2) 
for the amplification factor, which shows that the scattering is extremely powerful 
and will increase the power output of a given quadrupole at  R - I ,  by 60 dB at a 
Mach number The details of the scattering have been fully discussed by 
Ffowcs Williams & Hall. The only new feature of our work in this connexion is 
the derivation of the first-order correction away from perfect rigidity, obtained 
by inserting (A 7) into (3.5). 

A new result is found when the plate is limp relative to the surrounding fluid. 
It is found then that a much weaker type of scattering occurs, in which the ui 
law predicted by (4.2) for total acoustic power is replaced by a dependence upon 
u:/s. We suggest that the ug law applies in many aeronautical problems, but 
that the u! dependence replaces it in underwater situations where fluid loading 
effects are always very great. 

Now the above remarks appear to contradict some results and conjectures of 
Pfowcs Williams & Hall (1970), who have also treated the so-called ‘acoustically 
soft ’ half-plane, and have shown that the results are essentially the same as for 
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the rigid half-plane, apart from changes in directivity factors. They suggest 
that cases of intermediate compliance will probably not lead to any very different 
results. It is worth looking briefly at just what is involved here. Let [ ] denote 
the discontinuity in any quantity across the half-plane. Then the problem which 
we have solved is characterized by conditions of the form [9] = 7 +lay, 
[89/8y] = 0, and always leads to an integrable singularity in V$ near the plate 
edge. Our results for a limp surface are obtained by taking the limit 7 --f 0 of the 
solution of the complete problem, and continuity of normal velocity is retained 
in this limit. There is a second class of problems, however, characterized by the 
conditions 7[89/8y] = 9, [9] = 0, which do not involve any edge singularity in 
Vq5 except in the isolated case 7 = 0, which is referred to as the ‘acoustically soft ’ 
case. Thus the soft case is clearly an exception, and both types of intermediate 
compliance are likely to lead to new results. The second class of boundary con- 
ditions does not seem to have any physical relevance in acoustic problems 
(though it does in electromagnetic diffraction) and we have considered only the 
first class. A physically meaningful ‘limp’ surface can be obtained as a limit of 
the first class, and as we have seen, scatters a fundamentally weaker field than 
the rigid surface. 

A point to note about our work is that the representation of the turbulence 
by quadruple sources is quite essential. Ribner’s (1962) theory provides a viable 
alternative to the Lighthill model when boundaries are absent, and involves a 
weak O(M2)  monopole distribution in place of Lighthill’s O( 1) quadrupoles. 
However, such a theory fails to emphasize the strength of near-field relative to 
far-field in the way that is crucial in this scattering theory. The use of an O(M2) 
monopole in place of an O(1) quadrupole results, in fact, in an underestimate of 
the scattered field by a factor M2(R/Z,)2 as can be seen from (3.5) and (3.7). 
For the same reason, of course, the isotropic part $*Tkk/3 of qj scatters a very 
much weaker field than the non-isotropic quadrupole elements. 

Further work is now needed to determine whether the present conclusions are 
drastically altered by a variety of effects not yet treated. We mention the possible 
effects of a mean flow, of finite size of the plate, finite edge thickness and curvature, 
and viscous action near the edge. Work is at present in hand on these effects, 
in the hope that this will lead to a satisfactory understanding of the general 
features of the scattering by sharp-edged bodies. 

The work of D.G.C.  was supported by a contract from the Ministry of 
Technology for the study of fundamental problems in aerodynamic noise theory, 
administered by the National Gas Turbine Establishment, Pyestock, Hampshire. 

Appendix 
We require the multiplicative decomposition of 

K(a)  = p + (a2 - IC2)t. 

The complete factorization is given below, but we prefer to start with an asymp- 
totic factorization as p+O, regarding the function ,u as a perturbation of the 



Scattering of aerodynamic noise 735 

basic kernel (a2 - k2)* which alone is present in the case of a rigid surface. Since 
the perturbation grows less rapidly than the basic kernel as la1 -too, we can 
assert from the work of Kranzer & Radlow (1962,1965) that the required factori- 
zation will take the form 

K*(a) = (a & k ) i  +pM*(a) +o(p). (A 2) 

Inserting these forms into ( A l )  and letting p+O, we require the unknown 
functions M,(a) to satisfy 

The additive decomposition of (a2-k2)-* is well-known (Noble 1958, p. 21) - 

- 1 in the form 

(a2 - k2) )  - n(a2 - k2)i  

= P+(a) +P-(a) say. (A 4) 

From (A3) and (A4) we find, for example, that 

K-(a) = (a - k)* n(a2 - k2)* cos-l( - ;) + o ( 4 .  (A 5) 

K-(a) N a+ as a-too, Ima  < 0, (A 6) 

For the work of 8 2 we require 

K-( - k cos 0,) = - i (2k ) t  cos (SO,) nk ipeo sin 0, +o(p)) .  (A7) 

Next we derive a complete factorization. By logarithmic differentiation of 
( A l )  we have 

=-(-+-)- 1 1  1 ('+-). 1 (AS) 
2 a - p  a + p  2(a2-k2) i  a - p  a+p 

Here we have multiplied through by p- (a2- k2)*, and written p = (kz+pz)*, 
the root with Imp > 0 being implied. The first two terms in (AS) are a minus 
and a plus function respectively. To split up the last two terms we use the func- 
tions Pi(a) defined in (A4) giving, for example, 

in which the first term is a plus function, the second a minus function. Collecting 
up the terms, and using the identity P+(p) = P-( -p ) ,  we have 
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Now define a particular K J a )  such that 

D. G. Crighton and F.  G. Leppington 

lima-&K-(a) = 1, 

as a + co along the negative imaginary axis. Then integration and involution of 
(A 10) gives 

Finally we require an estimate of K-( - k cos 0,) for large values of p / k .  The 
asymptotic evaluation of (A 11) is complicated, though reasonably straight- 
forward, and we merely quote the result that 

K-( - k cos 0,) N p8e-tri. (A 12) 

We note also that (A5) can be obtained directly from ( A l l ) ,  but the iteration 
procedure is both simpler and capable of generalization to cases where the exact 
factorization is either impossible t o  obtain or hopelessly complicated. 

R E F E R E N C E S  

CRIGHTON, D. G. 1970 Proc. Roy. SOC. A 314, 153. 
CURLE, N. 1955 Proc. Roy. SOC. A 231, 412. 
DAVIES, H. G. 1967 Ph.D. Thesis, University of London. 
FFOWCS WILLIAMS, J. E.  1965 J. Fluid Mech. 22, 347. 
PFOWCS WILLIAMS, J. E. & HALL, L. H .  1970 J. Fluid Mech. 40, 657. 
KRANZER, H. C. & RADLOW, J. 1962 J. Math. AmaZ. AppZic. 4, 240. 
KRANZER, H.  C. & RADLOW, J. 1965 J. Math. Mech. 14, 41. 
LIGHTHILL, M. J. 1952 Proc. Roy. Soc. A 211, 566. 
MACDONALD, H.  M. 1915 Proc. Lord. Math. SOC. (a), 14, 410. 
NOBLE, B. 1958 Methods Based o n  the Wiener-Hopf Technique. London: Pergamon. 
POWELL, A. 1960 J. Acoust. SOC. Am. 32, 982. 
RIBNER, H .  S. 1962 U.T.I.A. Report, no. 86. 
SENIOR, T. B. A. 1952 Proc. Roy. SOC. A 213, 436. 


